The reaction of perfluoro-2,5-diazahexane 2,5-dioxyl with aromatic compounds and perfluoroiodoalkanes

Michael J. Green and Anthony E. Tipping*

Chemistry Department, University of Manchester Institute of Science and Technology, Manchester M60 1QD (UK)

(Received November 2, 1992; accepted April 8, 1993)

Abstract

Treatment of perfluoro-2,5-diazahexane 2,5-dioxyl (1) with the fluoroarenes C_6F_5X (X = F or Br at c. 20 °C; X = CF₃ at 50 °C) and pentafluoropyridine (50 °C) gives 2:1 copolymers in high yield, but pentachloropyridine is unreactive at 50 °C. Copolymers are also formed between 1 and the arenes C_6F_5I , C_6F_5H and C_6H_6 which did not analyse correctly for 2:1 copolymers; in the latter case, hydrogen abstraction is taking place as shown by the presence of N-OH and C=O groups in the polymer. Hexafluorobenzene is not incorporated in the polymer formed by treatment of 1 with a mixture of vinylidene fluoride and hexafluorobenzene. Photochemical reaction of trifluoroiodomethane with 1 affords the bishydroxylamine CF₃ON(CF₃)CF₂CF₂N(CF₃)OCF₃ in quantitative yield, while the di-iodides I(CF₂)_nI (n=2 and 4) give copolymers of 1 and the units (CF₂)_n (n=2 and 4), which contain (CF₂)_nI end-groups.

Introduction

The reactions of perfluoro-2,5-diazahexane 2,5-dioxyl (1) which have been reported [1-6] are comparable in type to those of its monofunctional analogue bis(trifluoromethyl)nitroxide $(CF_3)_2NO$. With compounds which react with the nitroxide to give 1:2 adducts, the bifunctional dioxyl 1 affords heterocyclic compounds, e.g. with SO₂ [6], or copolymers or mixtures of copolymers and heterocycles, e.g. with alkenes [1, 2, 7]. The diol 2, the bisnitrite 3 and the mercurial 4 have also been prepared by reaction of 1 with hydrogen bromide [1, 2], nitric oxide [1, 2] and mercury [8], respectively.

In a continuation of a study of the chemistry of dioxyl 1, its reactions with arenes and perfluoroiodo- and perfluorodi-iodo-alkanes are now reported.

Experimental

Starting materials

Perfluoro-2,5-diazahexane 2,5-dioxyl (1) was prepared by hydrolysis of the 2:1:1 adduct of trifluoronitrosomethane, tetrafluoroethene and phosphorus trichloride, followed by oxidation $[KMnO_4/H_2SO_4(aq)]$ [2].

The perfluoroarenes, pentachloropyridine, pentafluoropyridine and vinylidene fluoride were commercial samples and the fluoroiodoalkanes CF_3I and $I(CF_2)_nI$ (n=2, 4) were research samples available in this Department; the purity of each was checked (IR, ¹⁹F NMR spectroscopy) before use.

General techniques

Reactions were carried out *in vacuo* in Rotaflo tubes (c. 100 cm³) at room or elevated temperature in the dark (with the arenes) or irradiated at a distance of 10 cm from a Hanovia 500 W medium-pressure UV lamp (with the fluoroiodoalkanes) until the purple colour due to dioxyl 1 had disappeared. The volatile products were fractionated by passing the vapour at low pressure (1-2 mmHg) through traps cooled to an increasingly lower temperature, and polymeric materials were extracted from the tube with 1,1,2-trichlorotrifluoroethane followed by removal of the solvent *in vacuo* and pumping to constant weight.

The products were examined by IR spectroscopy (Perkin-Elmer 137 or 257 instruments), ¹⁹F NMR spectroscopy [Perkin-Elmer R10 (56.46 MHz) or Varian Associates HA100 (94.12 MHz) instruments; external reference CF₃CO₂H] and mass spectrometry (A.E.I. MS 902 spectrometer with an electron beam energy of 70 eV). The NMR spectra were recorded using neat liquids or solutions in CF₂ClCFCl₂ as stated in the text; chemical shifts to low field of reference are designated positive.

Boiling points were determined by Siwoloboff's method.

^{*}Author to whom correspondence should be addressed.

Reactions of dioxyl 1

(a) With benzene (general procedure)

A mixture of 1 (1.38 g, 4.63 mmol) and benzene (0.50 g, 6.41 mmol), stored (14 d), gave a mixture of the compounds CF_3NCO , $CF_3N=CF_2$ and SiF_4 (0.07) g, 0.56 mmol), unchanged benzene (0.36 g, 4.62 mmol, 72% recovered) and a dioxyl 1/benzene copolymer (1.45 g, 95%) [Analysis: Found: C, 22.9; H, 0.5; F. 57.4; N, 8.3%. Calc. for copolymer of 1 and C_6H_6 in the ratio 2.6:1 (C_{16.4}H₆F₂₆N_{5.2}O_{5.2})_n: C, 23.1; H, 0.7; F, 57.9; N, 8.5%]. IR $\nu_{max.}$ (cm⁻¹): 3440 (br., O–H str.); 2907 (w, C-H str.); 1773 (w, C=O str.); 1271-1179 (vs, C-F str.); 1089 (s, C-O str.); 1044 (s, N-O str.); 717 (m, CF₃ str.). MS m/z: 688 (0.1%); 389 (0.8); 295 (1.3, $C_5HF_{10}N_2O^+$; 282 (1.3, $C_4F_{10}N_2O^+$); 181 (6.7, $C_{3}HF_{6}NO^{+}$; 150 (16.1, $C_{2}HF_{5}NO^{+}$); 149 (16.5, $C_{2}F_{5}NO^{+}$; 114 (21.2, $C_{2}F_{4}N^{+}$); 69 (100.0, CF_{3}^{+}); 47 (6.3, CFO⁺).

(b) With polyfluoroaromatic compounds

Reactions of dioxyl 1 with the polyfluoroarenes C_6F_5X (X = F, Br, I, CF₃ and H) and with pentafluoropyridine are summarised in Table 1. Elemental analysis data on the product copolymers (**6a-f**) are given in Table 2 and IR and MS data in Table 3.

TABLE 1. Reaction of dioxyl 1 with polyfluoroaromatic compounds

Arene	Reactic conditi		Ratio arene/ 1	Recovered arene (%)	Products	(%)	
	Temp. (°C)	Time (d)		(70)			
C_6F_6	20	21	1.5:1	67	6a	(98)	
C ₆ F ₅ Br	20	14	1.1:1	55	6b	(97.5)	
C ₆ F ₅ CF ₃	50	6	0.82:1	36.5	6с	(100)	
C_5F_5N	50	4	1.8:1	71.5	6d	(100)	
C ₆ F ₅ I	20	19	1.3:1	*	6e	(88.5)	
C ₆ F ₅ H	20	16	2.7:1	80	6f	(100)	

*Not determined because recovered C_6F_5I was heavily contaminated with iodine.

TABLE 2. Elemental analysis data for dioxyl 1/arene copolymers

(c) With pentachloropyridine

A mixture of 1 (0.85 g, 2.85 mmol) and pentachloropyridine (0.55 g, 2.19 mmol) in tetrachloromethane (10.0 g) heated at 50 °C (28 d) gave unchanged pentachloropyridine (0.55 g, 2.19 mmol, 100% recovered) and a mixture of unchanged dioxyl 1 and tetrachloromethane.

(d) With a mixture of vinylidene fluoride and hexafluorobenzene

A mixture of 1 (0.90 g, 3.02 mmol), the alkene (0.22 g, 3.44 mmol) and hexafluorobenzene (0.02 g, 0.11 mmol), stored (13 d), gave unchanged vinylidene fluoride (0.035 g, 0.55 mmol, 16% recovered), unchanged hexafluorobenzene (0.02 g, 0.11 mmol, 100% recovered) and a 1:1 dioxyl 1/vinylidene fluoride copolymer (1.05 g, 96%) [Analysis: Found: C, 19.6; H, 0.6; N, 7.3%. Calc. for $(C_6H_2F_{12}N_2O_2)_n$: C, 19.9; H, 0.6; N, 7.7%].

A second experiment using a mixture of 1 (0.77 g, 2.58 mmol), the alkene (0.18 g, 2.81 mmol) and hexafluorobenzene (0.24 g, 1.29 mmol), stored (7 d), gave unchanged hexafluorobenzene (0.23 g, 1.24 mmol, 96% recovered) and a 1:1 dioxyl 1/vinylidene fluoride copolymer (0.89 g, 95.5%) (Analysis: Found: C, 20.0; H, 0.7; N, 7.4%).

(e) With trifluoroiodomethane

A mixture of 1 (0.62 g, 2.08 mmol) and trifluoroiodomethane (1.35 g, 6.89 mmol), irradiated (24 h) and the products then shaken *in vacuo* with mercury (3.0 g) to remove the iodine formed (10 min), gave unchanged trifluoroiodomethane (0.53 g, 2.71 mmol, 39.5%) which condensed at -196 °C and a -23 °C fraction identified as perfluoro-(3,6-dimethyl-2,7-dioxa-2,6-diaza-octane) (12) (nc) (0.91 g, 2.08 mmol, 100%) (Analysis: Found: C, 16.5; F, 69.9; N, 6.4%. C₆F₁₆N₂O₂ requires: C, 16.5; F, 69.7; N, 6.4%), b.p. 104 °C. IR ν_{max} (cm⁻¹): 1287–1174 (vs, C-F str.); 1101 and 1082 (s, C-O str.); 1059 and 1043 (s, N-O str.); 722s and 710 (m, CF₃ def.). ¹⁹F NMR (neat) δ : +11.0 (br., 12F, 2NCF₃ and 2OCF₃); -23.1 (s, 4F, CF₂CF₂) ppm. MS *m/z*: 417 [0.6%, (M-F)⁺]; 329 (1.0, C₃F₁₁N₂O₂⁺); 218 (47.5, C₃F₈NO⁺);

Compound	Analys	Analysis						Analysis					
	Found (%)			Calc. (%) ^a			Found (%)			Calc. (%) ^a			
	С	F	N	С	F	N		С	F	N	С	F	N
6a 6b 6c	21.3 19.9 21.6	63.1 56.4 63.4	7.2 6.7 7.1	21.5 19.9 21.6	63.2 56.3 63.9	7.2 6.6 6.7	6d 6e 6f	20.6 18.8 21.4	61.7 53.6 60.4	9.1 6.4⁵	20.4 18.9 22.0	62.1 53.4 62.2	9.2 6.3 ^b

^aCalc. for 2:1 copolymers of dioxyl 1 and the arene.

^b% I (Found: 12.0. Calc. 14.3).

Compound	IR (cm ⁻¹)	MS m/z (%) ^a
ба	1736 (C=C); 1282–1170 (C-F); 1031 (C-O-N); 713 (CF ₃ def.).	798 (7, $C_{14}F_{26}N_4O_5$); 782 (3); 763 (3); 298 (3); 199 (95); 186 (9, C_6F_6); 153 (49); 151 (73); 114 (23); 103 (55); 101 (100); 100 (26); 85 (37); 69 (92); 47 (16).
6b	1757 and 1692 (C=C); 1280 (C-F); 1105 (C-O); 1040 (C-O-N); 708 (CF ₃ def.).	842/844 (8, $C_{14}BrF_{25}N_4O_4$); 823/825 (2); 544/546 (3); 298 (16); 246/248 (12, C_6BrF_5); 199 (53); 153 (13); 151 (20); 114 (33); 103 (20); 101 (30); 69 (100); 47 (14).
6с	1698 (C=C); 1274–1164 (C-F); 1107 (C-O); 1030 (C-O-N); 710 (CF ₃ def.).	832 (1, $C_{15}F_{28}N_4O_4$); 813 (2); 263 (5); 236 (4, C_7F_8); 199 (41); 164 (18); 149 (8); 114 (39); 100 (14); 69 (100); 47 (13); 44 (11).
6d	1761 (C=N); 1280–1163 (C-F); 1098 (C-O); 1029 (C-O-N); 711 (CF ₃ def.).	746 (2, $C_{13}F_{24}N_5O_4$); 249 (12); 199 (46); 153 (48); 114 (20); 103 (64); 101 (100); 100 (22); 85 (42); 69 (76); 47 (17); 44 (36); 31 (18).
бе	1751 and 1667 (C=C); 1279–1164 (C-F); 1107 (C-O); 1033 (C-O-N); 713 (CF ₃ def.).	893 (0.3, $C_{16}F_{29}N_5O_5$); 294 (100, C_6F_5I); 167 (52); 151 (18); 117 (58); 103 (14); 101 (22); 93 (14); 69 (24); 44 (17).
6f	1715 (C=C); 1282–1170 (C-F); 1031 (C-O-N); 713 (CF ₃ def.).	764 (5, $C_{14}HF_{25}N_4O_4$); 745 (3); 298 (19); 199 (100); 16.8 (13.3, C_6HF_5); 164 (11); 149 (12); 114 (24); 100 (32); 99 (20); 69 (91); 47 (8); 44 (21).

TABLE 3. Summary of IR and MS data for dioxyl 1/arene copolymers

^aIntensities expressed as percentage of the base peak.

130 (56.1, $C_2F_4NO^+$); 119 (22.5, $C_2F_5^+$); 114 (14.0, $C_2F_4N^+$); 69 (100.0, CF_3^+); 64 (4.7, CF_2N^+).

A mixture of 1 (0.62 g, 2.08 mmol) and trifluoroiodomethane (0.86 g, 4.39 mmol), stored (14d), gave a quantitative recovery of unchanged reactants.

(f) With 1,2-di-iodotetrafluoroethane

A mixture of 1 (1.01 g, 3.39 mmol) and 1,2-diiodotetrafluoroethane (1.28 g, 3.62 mmol), irradiated (20 h) and the products shaken with mercury (3 g) to remove iodine (0.5 h), gave a mixture (0.49 mmol) of the compounds $CF_3N=CF_2$, COF_2 and SiF_4 (IR spectroscopy), and a viscous liquid identified as a dioxyl 1/tetrafluoroethene copolymer (14) (1.16 g) (Analysis: Found: C, 17.0; F, 58.7%). ¹⁹F NMR (CF₂ClCFCl₂) δ: +12.3 (mult., 6F, 2CF₃N); -13.9 (br., 4F, OCF₂CF₂O); -21.5 (br., 4F, NCF₂CF₂N) ppm. MS m/z: 860 (2.5%, $C_{13}F_{30}N_5O_4^+$; 856 (1.8, $C_{12}F_{28}N_6O_6^+$); 758 (3.3, $C_{12}F_{26}N_4O_4^+$; 749 (4.2, $C_{11}F_{27}N_4O_3^+$); 562 (3.1, $C_9F_{20}N_3O_2^+$; 426 (5.6, $C_7F_{14}N_2O_3^+$); 363 (7.7, $C_6F_{13}N_2O^+$; 227 (51.8, $C_4F_7NO_2^+$ and $C_2F_4I^+$); 180 $(7.3, C_3F_6NO^+)$; 177 (14.5, $C_3F_5NO_2^+$ and CF_2I^+); 127 $(30.5, C_2F_3NO_2^+ \text{ and } I^+); 114 (35.5, C_2F_4N^+); 100$ $(15.6, C_2F_4^+); 69 (100.0, CF_3^+); 47 (14.6, CFO^+).$

(g) With 1,4-di-iodo-octafluorobutane

A mixture of 1 (0.87 g, 2.92 mmol) and the diiodoalkane (1.38 g, 3.04 mmol), irradiated (5d) and the products shaken with mercury (5 g) to remove iodine (10 min), gave a mixture (0.09 g, 0.92 mmol) of the compounds CF₃NO, CF₃NCO, CF₃N=CF₂, COF₂ and SiF₄ (IR spectroscopy) and a dioxyl 1/perfluoro(tetramethylene) copolymer (15) (1.22 g) (Analysis: Found: C, 17.6; F, 60.5%). ¹⁹F NMR (CF₂ClCFCl₂) δ : +18.9 (mult., 1F, CF₂I); +12.2 (mult., 16F, 2CF₃N); -10.9 (s, 8F, 2CF₂O); -14.0 (s, 1F, CF₂O); -21.2 (s, 9F, NCF₂CF₂C); -36.1 (s, 2F, CCF₂CF₂C); -47.1 (br., 8F, CCF₂CF₂C) ppm. MS *m*/*z*: 821 (0.7%); 716 (1.7); 526 (0.6, C₉F₁₈N₂O₃⁺); 476 (13.7, C₈F₁₆N₂O₃⁺); 327 (5.4, C₄F₈I⁺); 181 (7.9, C₄F₇⁺); 177 (19.2, C₃F₅NO₂⁺ and CF₂I⁺); 169 (10.0, C₃F₇⁺); 131 (10.1, C₃F₅⁺); 130 (11.1, C₂F₄NO⁺); 127 (21.6, C₂F₃NO₂⁺ and I⁺); 114 (22.2, C₂F₄N⁺); 100 (21.0, C₂F₄⁺); 69 (100.0, CF₃⁺).

Attempted reactions of the 2:1 dioxyl 1/

hexafluorobenzene copolymer 6a

(a) With bromine

A mixture of copolymer **6a** (0.20 g), bromine (0.12 g, 0.75 mmol) and solvent $CF_2ClCFCl_2$ (3.2 cm³), stored (24 h) and the volatile products removed *in vacuo*, gave a solid shown (IR spectroscopy and mass spectrometry) to be unchanged copolymer **6a** (0.17 g, 85% recovered) [Analysis: Found: C, 21.2%. Calc. for $(C_{14}F_{26}N_4O_4)_n$: C, 21.5%].

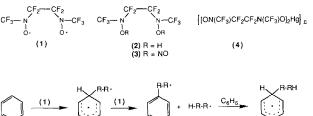
A second experiment using copolymer **6a** (0.52 g), bromine (0.78 g, 4.87 mmol) and solvent $CF_2CICFCl_2$

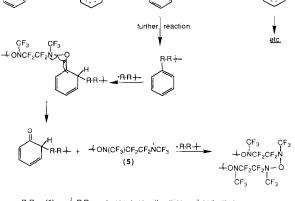
(3.1 cm³), heated at 70 °C (10 d) and the volatile material removed *in vacuo*, gave a white solid which was shown (IR spectroscopy and mass spectrometry) to be unchanged copolymer **6a** (0.40 g, 77% recovered) [Analysis: Found: C, 21.8%. Calc. for $(C_{14}F_{26}N_4O_4)_n$: C, 21.5%].

(b) With bromine under photochemical conditions

A mixture of the copolymer **6a** (0.53 g), bromine (0.04 g, 0.25 mmol) and solvent $CF_2ClCFCl_2$ (3 cm³), irradiated (6 d) and the volatile material removed *in vacuo*, gave a white solid which was shown (IR spectroscopy and mass spectrometry) to be unchanged copolymer **6a** (0.47 g, 89% recovered) [Analysis: Found: C, 21.3%. Calc. for $(C_{14}F_{26}N_4O_4)_n$; C, 21.5%].

(c) With N,N-bis(trifluoromethyl)amino-oxyl


A mixture of the copolymer **6a** (0.51 g), the oxyl (0.34 g, 2.02 mmol) and solvent $CF_2ClCFCl_2$, heated at 70 °C (8 d) and the volatile material removed *in vacuo*, gave a white solid which was shown (IR spectroscopy and mass spectrometry) to be unchanged copolymer **6a** (0.51 g, 100% recovered) [Analysis: Found: C, 21.2; F, 63.4; N, 7.6%. Calc. for $(C_{14}F_{26}N_4O_4)_n$: C, 21.5; F, 63.2; N, 7.2%].


Results and discussion

Reaction of dioxyl 1 with an excess of benzene (1:1.4 molar ratio) in the dark (14 d) gave unchanged benzene (72% recovered), a minor volatile mixture of breakdown products of 1 (CF₃NCO, CF₃N=CF₂ and SiF₄) and a copolymer of 1 and benzene (98.5%) in the approximate ratio 2.6:1 (elemental analysis). The copolymer showed IR bands at ν_{max} 3440 (O-H str.) and 1773 (C=O str.) cm⁻¹, indicating that hydrogen abstraction had occurred to some extent.

Although the nitroxide $(CF_3)_2NO \cdot$ was reported originally not to react with benzene [9] and later work claimed that 1,2,4-tris[bis(trifluoromethyl)amino-oxy] benzene was formed [10], a study in this department showed that addition to the π -system took place to give a complex mixture of products, believed to consist of both cyclohexenyl and cyclohexadienyl compounds; analytical data indicated that the mixture contained on average four $(CF_3)_2NO$ groups per benzene molecule [11, 12]. The oxadiazapentane $(CF_3)_2NON(CF_3)_2$ was isolated from the reaction products and this indicated that carbonyl compounds were also formed, which was substantiated by UV spectral studies [12].

Clearly, analogous reactions are taking place in the reaction of dioxyl 1 with benzene to give carbonyl compounds and the amino radical 5 which is scavenged by any amino-oxy radical (including dioxyl 1) present in the system as shown in Scheme 1.

 $\cdot R \cdot R \cdot = (1)$; $+ R \cdot R \cdot = polymer chain with amino-oxyl end group$

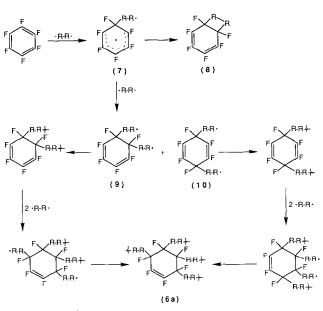
Scheme 1. $\left|\operatorname{Ar}(ON(CF_3)CF_2CF_2N(CF_3)O)_2\right|_{B}$

(6) a; $Ar = C_6F_6$ b; $Ar = C_6F_5Br$ c; $Ar = C_6F_5CF_3$ d; $Ar = C_5F_5N$ e; $Ar = C_6F_5I$ f; $Ar = C_6F_5I$

The reaction of dioxyl 1 with a series of polyfluoroarenes was next studied and the results obtained are summarised in Table 1.

The products from all the reactions were copolymers and those formed from the arenes C_6F_5X (X=F, Br and CF₃) and pentafluoropyridine gave correct elemental analyses for the 2:1 copolymers **6a-d**. In the reaction involving the arene C_6F_5I , a considerable amount of iodine was formed and the product did not analyse correctly for the 2:1 copolymer **6e**, being low in iodine content. Similarly, the copolymer derived from pentafluorobenzene did not give a correct elemental analysis for the 2:1 copolymer **6f**, but the ratio of **1**/ arene reacted (not recovered) was close to 2:1.

The IR spectra of all the copolymers formed from the benzenes showed weak absorptions in the range 1750–1660 cm⁻¹, which is the region associated with C=C stretch in fluoroalkenes, confirming the unsaturated nature of the products. However, the 2:1 copolymer **6a** did not react with the nitroxide $(CF_3)_2NO$ at 70 °C (8 d) nor did it react with bromine at 70 °C or under photochemical conditions, indicating steric protection of the double bonds in the copolymer.

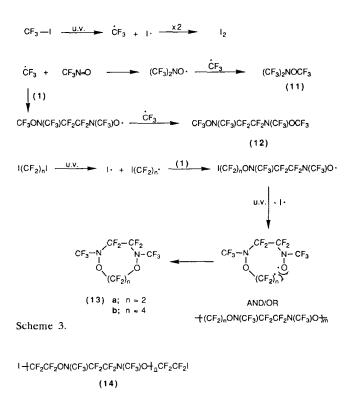

It has been observed previously that reaction of the nitroxide $(CF_3)_2NO \cdot$ with hexafluorobenzene at 80 °C (14 d) afforded a mixture of the tetra- and hexa-addition products [11].

The strong IR absorption at 1760 cm⁻¹ (C=N str.) observed for the copolymer **6d** formed from penta-fluoropyridine showed the resistance of the C=N bond to attack by dioxyl **1**. Surprisingly, perhaps dioxyl **1** did not react with pentachloropyridine at 50 °C over an extended time period (28 d).

The products are considered to be formed as shown in Scheme 2 for hexafluorobenzene.

As expected, attack by dioxyl 1 on the polyfluoroarenes was slow leading to the formation of an intermediate radical 7 which could be scavenged by a second molecule of dioxyl 1 or undergo internal cyclisation. The latter reaction to give the bicyclo[6.4.0]dodecadiene system 8 is considered less likely, because in liquid-phase reactions of 1 with alkenes copolymer formation is favoured at the expense of cyclisation to afford 1:1 adducts [1, 2, 7]. Scavenging of the intermediate radical 7 by dioxyl 1 could occur at the 2- or 4-positions to give the dienes 9 and 10, respectively; attack might be expected to be favoured at the 2-position, since this leads to a conjugated (and hence more stable) 1,3diene. It has been reported [1] that reaction of dioxyl 1 with perfluoro-1,3-dienes is rapid at room temperature and affords copolymers in high yield.

Dioxyl 1 was initially synthesised for use as a crosslinking agent for unsaturated nitroso rubbers [1, 3]. The polymers obtained from reaction between dioxyl 1 and alkenes are in general viscous oils of low molecular weight, and it was considered possible that reaction of 1 with an alkene in the presence of a polyfluoroarene would result in the arene being incorporated in the polymer chain and if higher molecular weight copolymers



 $\cdot R \cdot R \cdot = (1); - R \cdot R + = polymer chain$

Scheme 2.

were formed these could exhibit improved physical properties. However, reaction between 1 and the alkene $CH_2=CF_2$ in the presence of hexafluorobenzene [c. 2:2:1 molar ratio (7 d) or c. 1:1:0.03 molar ratio (13 d)] at room temperature gave only a 1:1 dioxyl $1/CH_2=CF_2$ copolymer [ON(CF₃)CF₂CF₂N(CF₃)-OCH₂CF₂]_n and a near-quantitative recovery of the arene.

Tris(trifluoromethyl)hydroxylamine (11) was prepared originally by photochemical reaction of trifluoroiodomethane with trifluoronitrosomethane [13], and the proposed intermediate, the nitroxide $(CF_3)_2NO_{\cdot}$, was later found to give 11 in high yield (84%) on reaction with trifluoroiodomethane under photochemical conditions [14]. It was therefore decided to investigate the photochemical reaction of trifluoroiodomethane with dioxyl 1 as a possible route to the perfluorobishydroxylamine 12. If this was successful, an initial study of the corresponding reactions of the diiodoalkanes $I(CF_2)_n I$ (n=2 and 4) would then be undertaken as a possible synthesis of the corresponding 1:1 copolymers and also of the heterocycles 13a and 13b (Scheme 3). It was realised that liquid-phase reaction would favour polymer formation, while gas-phase reaction should favour heterocycle formation; low yields

 $1 + (CF_2)_4 ON(CF_3)CF_2CF_2N(CF_3)O + (CF_2)_4 I$ (15)

of heterocycles have been observed in certain liquidphase reactions of 1 with alkenes [2, 7].

The heterocycle 13a has been made previously, together with a 1:1 copolymer (ratio 52:48), by the reaction of 1 with tetrafluoroethene in the gas phase [15].

Trifluoroiodomethane did not react with dioxyl 1 in the dark at room temperature (14 d), but on UV irradiation (1 d) of the mixture (3.3:1 molar ratio) followed by removal of the iodine formed with mercury, compound 12 (100%) was isolated together with unchanged iodoalkane (39.5% recovered). The high yield of compound 12 confirmed the effectiveness of 1 as a radical scavenger.

A mixture of dioxyl 1 and 1,2-di-iodotetrafluoroethane [a slight excess of the perhalogenoalkane was used to enable the completion of reaction to be judged (absence of colour due to 1 thus avoiding over-irradiation], irradiated (both liquid and gas phases, 20 h) gave (after removal of iodine) a small amount of a mixture of decomposition products ($CF_3N=CF_2$, COF_2 and SiF_4) and a copolymer of dioxyl 1 and tetrafluoroethene 14, the IR and ¹⁹F NMR spectra of which were almost identical to the IR [15] and ¹⁹F NMR [2] spectra reported for the 1:1 copolymer formed by the liquidphase reaction between dioxyl 1 and tetrafluoroethene. However, the mass spectrum of the polymer formed in the present work showed peaks at m/z 227 $(CF_2CF_2I^+)$; 177 (CF_2I^+) ; 127 (I^+) , indicating that CF₂CF₂I groups terminated the polymer chain. The heterocycle 13a was not detected in the products.

Irradiation (liquid and gas phases) of a mixture of 1 and 1,4-di-iodo-octafluorobutane (1.0:1.04 molar ratio, 5 d) gave (after removal of iodine) a volatile mixture (c. 4%) of decomposition products (CF₃NCO, CF₃NO, CF₃N=CF₂, COF₂ and SiF₄) and a dioxyl 1/perfluorotetramethylene copolymer (15). The ¹⁹F NMR spectrum of 15 showed absorptions for the $-CF_2CF_2CF_2CF_2ON(CF_3)CF_2CF_2N(CF_3)O-$ chain and also for $-CF_2CF_2CF_2CF_2CF_2CF_2I$ end-groups in the ratio

c. 4:1. No evidence was obtained for the formation of heterocycle 13b.

Acknowledgement

We thank Professor R.N. Haszeldine for his interest in this work.

References

- 1 R.E. Banks, K.C. Eapen, R.N. Haszeldine, P. Mitra, T. Myerscough and S. Smith, J. Chem. Soc., Chem. Commun., (1972) 833.
- 2 R.E. Banks, K.C. Eapen, R.N. Haszeldine, A.V. Holt, T. Myerscough and S. Smith, J. Chem. Soc., Perkin Trans. 1., (1974) 2532.
- 3 R.E. Banks, R.N. Haszeldine, P. Mitra, T. Myerscough and S. Smith, J. Macromol. Sci., A8 (1974) 1325.
- 4 A. Arfaei, R.N. Haszeldine and S. Smith, J. Chem. Soc., Chem. Commun., (1976) 260.
- 5 B.L. Booth, R.N. Haszeldine and R.G.G. Holmes, J. Chem. Soc., Dalton Trans., (1982) 671.
- 6 A. Arfaei and S. Smith, J. Chem. Soc., Perkin Trans. 1, (1984) 1791.
- 7 M.J. Green and A.E. Tipping, J. Fluorine Chem., 65 (1993) 115.
- 8 M.T. Kanjia and S. Smith, unpublished results; M.T. Kanjia, *PhD Thesis*, University of Manchester, 1977.
- 9 W.D. Blackley and R.R. Reinhard, J. Am. Chem. Soc., 87 (1965) 802.
- 10 S.P. Makarov, M.A. Englin, A.F. Videiko, V.A. Tobolin and S.S. Dubov, *Dokl Akad. Nauk SSSR*, 168 (1966) 483.
- 11 R.E. Banks, R.N. Haszeldine and G. Shaw, unpublished results; G. Shaw, PhD Thesis, University of Manchester, 1968.
- 12 R.E. Banks, D.L. Connell and R.N. Haszeldine, unpublished results; D.L. Connell, *PhD Thesis*, University of Manchester, 1970.
- 13 A.H. Dinwoodie and R.N. Haszeldine, J. Chem. Soc., (1965) 1681; R.N. Haszeldine and A.E. Tipping, J. Chem. Soc. C, (1966) 1236.
- 14 R.E. Banks, R.N. Haszeldine and M.J. Stevenson, J. Chem. Soc. C, (1966) 901.
- 15 R.E. Banks, R.N. Haszeldine and J.P. Tomlinson, unpublished results.